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Amplitude Distribution Independent Prediction of Fatique Life 

Dieter J oensson 

lt is shown that the fatigue life of vibrating machine parts rnay be predicted by spectro-analysis 
without information on amplitude distributions. For this purpose a square mean, instead of an 
arithmetic mean in the shape of the Palmgren/ M iner' s rule, is proposed as the cumulative damage 
hypothesis. 
The spectro-analysis is perf ormed on a newly introduced damage gradient function corresponding 
to the load time function. This damage gradient function may be analyzed by discrete (fast) Fourier 
transformation. 
The article contains some examples of application including random processes. 

Es wird gezeigt, daß die Lebensdauer von schwingenden .Maschinenbauteilen durch Spektralana­
lyse ohne Informationen über Amplitudenverteilungen berechnet werden kann. Zu diesem Zweck 
wird ein quadratischer Mittelwert als kumulative Schädigungshypothese vorgeschlagen anstelle 
eines arithmetischen Mittelwertes in Form der Palmgren/ M iner-Regel. Die Spektralanalyse mittels 
schneller Fouriertransformation erfolgt an einer neu eingeführten Schädigungsgradientenfunktion, 
die der Beanspruchungs-Zeit-Funktion zugeordnet ist. 

Betriebsfestigkeit, Lebensdauerberechnung, Spektralanalyse, verteilungsfrei 

conponrnnemre ycTanocnr, pacqeT .n;onroaeqHoCTII, cneKTpaJihHhIH attaJIII3, 6e3 cPYHKU:IIII 
pacrrpe.n;eneHm1 

structural fatigue, fatigue life estimation, spectro-analysis, distribution independent 

resistance de fatique, evalution durabiJite, anaJyse spectrographique, independant de diRtri­
bution 

1. Introduction 

Three main input values are necessary for fatigue life prediction of vibrating machine 
parts: firstly information on fatigue behaviour of material, secondly a cumulative 
fatigue damage hypothesis, and thirdly an effective description of the load time 
function. The typical load has to be outlined and so recorded that the essential 
damage influences are contained. The cumulative frequency distribution of ampli­
tudes is proved to be most responsible for fatigue life. Therefore, at present it is 
customary to calculate the fatigue strength on the basis of amplitude distribution. 
These distributions may be detected by means of different counting methods, which 
generally provide different results, because only selected points are processed, e. g. 
maxima and minima. However, when the digital counting result is obtained, then 
the fatigue life can be directly calculated by a cumulative sum formula- without 
any spectrum. Thus, so far the spectro-analysis on fatigue strength has only been 
used for additional process information. Such analysis is based on sam ples and hence 
requires processing of all values instead of selected points. Besides, there are already 
some formulas for fatigue life prediction on the basis of samples, but until now they 
have always needed knowledge about the special amplitude dfatribution. Independent 
of these problems, in recent years the spectro-analysis instrumentation has been 
developing rapidly. 
In the following derivation is shown, which contributions have to be realized for a 
sole application of spectro-analysis on fatigue Rtrength - without consideration of 
amplitude distributions. 
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2. Fatique life due to a stationary Gaussian load process 

So far tlw Gaussian procPss ha:-; hePn inve:-;tigated and applicd rnost of all. :Wiles 111 
was the tirst to propose a closcd solution for spcctro-analytical caleulation of fatigne 
life: 

] 

- J' ( cp l l )--;; 1 '9 .. rTr ··- 2 . . . · , .- · O('ft (1) 

wht>re 

l': Gamma function. fP: exponent of \Y(whl('r·s curve (s-..i:V-curvf•, i.0. strPss 
arnplitudc> against Numbcr of cyclt>s to failnre) 

a"ff: root mean square of all samples of tlw stre:-;s tinw function a (t). Only a('rr is 
calcula hle by :-;pectro-anaJ~'si:-; 

a„: reduced :-;tress, by "·h ich according to Milc>s. tlw fatigue life N .in occurs: 

1V Jli = K w • a r - 'f (2) 

where Kw: constant of 8-N-curve 
Eq. (2) nwans a :-;traight 8-N-curvP in a double logarithmic diagram. From Eqs. (1) 
and (2) the fatiguC' life by .:\'liles is as follows: 

NJ1;= 
Kw ___ _ (3) 

'I 

r ( ~ . : l ) . :2 :2 • (j rff '{ 

The foundation of this eqnation is tlw assumption of linear <lamagf', i. e. the formula 
hy Palmgren [2] and .:\Iiner 1:~] without PndurancP lirnit (Corten/Dolan [4] 
linearifiPd): 

III 

,, n /\ 

NJ1 = /\ = i 

~I' i/ /\ 

(4) 

/\.:1--S//\ 
wlwrC' 

N.ll: fatigue life hy Palmgrt>n/:\linPr 
m: num lwr of amplitude hlock :-;teps of a sine function with various amplitudC' 

values a1.:. 
k: hlock step 
n 1,: num her of load e~·cles per block step 
NH: num lwr of loacl cyC'les t hat \\·ill produce fatigue failure dlw to a /\ 

:\'liles rPplaced tlw !'ums in Eq. (4) h~· intt>grals of fn•quenc,v density p 1 (a) of maxima 
a. for example: 

1.' n " = r P 1 ( a ) et 11 ~ 11 1 t 1 ( a ) d o-
1\ = l u u 

because of p 1 (a) =c 11 1 f 1 (11) 
where 11 1 : total numhf'r of maxima 

(5) 

f 1 (0): onr·-dirnensional densit~' function of maxima 

The maxima of a :-;tationar~' ngodic Gaussian process haYP a Riet> cli:-;trilmtion [5, G]. 
By c;1mtrast, tlw sarnplc>s han• a Gaussian distrilmtion. 
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Particulary in a narrmv-band Gaussian process the Rice probability density of 
maxima goes over to a Raylcigh density: 

. a [ a
2 

J f (a)= -- -exp ---„ 1 Uetr2 2aelf" 
(6) 

Thus, the formula by Mil es (4) can be dm;cribed in consideration of Eqs. (5) and (6) 
as a ratio of integrals of the Rayleigh density (6). Miles essentially simplified this 
ratio by substituting the integrals through the complete Gamma function: 

I' ( Z -j- 1) = 2- z l x2 z - l · exp [ - ~ X2 J d X (7) 

Eq. (4) only becomes Eq. (:3) by means of Eq. (7). Consequently, Eq. (3) Ü; only valid 
for a stationary ergodic narrow-band Gaussian load process, since Eq. (:3) is based on 
the Rayleigh distribution of maxima. Spectro-analytical formulas proposed later 
may often be reduced to Miles'formula. 

3. Distribution independent calculation of fatique life 

Of course, it is conceivable to apply other kinds of dis'tribution instead of distribu­
tion (6). All spectro-analytical formulas, \vhich are based on the Palmgren/Miner 
rule ( 4) may be reduced to the following fundamental type: 

N 1 
, JJ = L{J;(J )l . aerr 90 

(8) 

where L: functional expression dependent on the one-dimensional probability 
density f l of maxima a. 

The root mean square Ueff can be obtained by the total power Sage,; of the process 
(j (t) : 

(9) 

where /~: power spectral density and c•J: angular frequency. Eq. (8) is based on the 
assumption of linear cumulatiYe damage. Only this kind of damage supplies a result 
independent of the sequence of load steps. ::\IoreoYer. linear damage according to 
Eq. (4) represents an arithmetic mean of all additional damage d DK of the steps 
k=l,2, .... m: 

(10) 

The reciprocal cycles l / iV H are here designated as . ,Step Damage Gradü~nt L1 D H.". 

Considering L1 DH, the Palmgren/~Iiner rule (4) without endurancc limit is an 

arithmetic mean of step damage gradients J b K: 

where 

m 
\' ..:... n /\ 

]\ = l 

11/. 

L 11H·JDH 
H = 1 
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When Eq. (ll) iR compared to Eq. (8), then it iR clear that the arithmetic mean of 
amplitudm; cannot be :-;ufficiently deRcrihed by the root mean square of Ramplfä, 
hecause there is not any relation:-;hip hetween both values. 
Incidentally, that is tlw reason why beside the root mean square a"rr it iR ahrn~'s 
necc:-;sary to use additionaJI~· a functional expression L for charakterization of thc 
amplitude distrihution - if the Palmgren/Miner rnle is utilized. One has to choose 
another mean to avoid the knowledge about amplitude di:--tribution. For this purpose 
the root mean square of amplitudeR i:-; suitable.· For example, a zero mean sine func­
tion x (t) of a con:-;tant frequency without change of mean strc:-1s and with various 
amplitudes .r, sc>e Fig. l. provides: 

(13) 

where 
Xerr: root mean square of samples x (t) 

XK2 : root mc>an square of amplitudes :J'K: 

(14) 

t 
X 

x~ff 

t--

Fig. 1 Sinf' funC'tion with Yarious amplitudf's ;rk 

Hence there exists hetween hoth root nwan square values a simple relation, which 
is independent of distrihution of amplitudes. Therefore it was proposed [7, 8] to 

use, instead ofEq. (11). the root nwan square JD/\ 2
: 

N,, = --~:_:c 
L1]) 1\2 

(15) 

However, in this ca:-;e the mean :-;quare has to be construeted hy a root mean square 
of sampled darnage gradient:-; LI D (t). These g:radients follow from the sampled streRR 
time function <J (t), i.e. everey :-1ample IJ of timet provides one sample /1 D. 
Tn this manner a „Damage Gradient Funetion ;J D (t)" is produccd. Thc function 
11 D (t) is detected hy tlw s-S-curw. e. g. 

l 
,,;JD(t)=--- ·a11(t) 

Kw 
(lß) 

here for N (a) as straight line in a log IJ-log N-diagram. The darnage capacity is only 
asRumed for Hamples a (t) abon~ the mean value, becau:-;e in a zero mean load time 
function, an (~qually large negative sample belongs to every positive sarnple. This 
point of view (•orrc>spondH to the structurP of an s-N-curvP. 
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The root mean square L1 Derr of the damage gradient function L1 D (t) may be detccted 
cither as square mean of all samples L1 D (t): 

T 

J Derr2 = lim ~ J L1 D 2 (t) d t (17) 
T-oo u 

wherc 'P: time area 
or by mcam; of thc total power S J n ges : 

L1 Dcff2 = s.J JJgcs = f G,1 D (f) df 
u 

where G J JJ = 2 S1 D: one-side power spectral density and 
f: frequency 

ÖJ D (f) arü„es from thc complex amplitude density „i1 n(J j): 

Ö_iJJ(f) = 2. A.11J (jf) . ..-iJJJ* (jf) df 

(18) 

(19) 

where ( )* conjugatc complcx part. j = v=-1 
Finally, the Fourier transformation of the real function J D (t) supplies the ampli-
tude density: 

A.J n (j f) = / J D (t) · exp- [- j · 2 nf t] d t (20) 

4. The factor u 

Because L1 D (t) is a sine function a (t) powered by <p, the 12 ratio (13) is no longer 
valid. The ne\v factor u has to be calculated by: 

and 

- -- = ---;; = hm ---;- / sm- q (1J t d t (
2ic__fJ;\2):3 1 . 1 '!' „~ 
L1 Detr u- T ~ = T 0 

where rp: cxponent of .s-N-curve, c1J = 2 nf: angular frequency 
Dependent on a integer-rnlued exponent <p, Eq. (22) yields: 

„ 2 4 6 8 ( 2n ) 
u~ (<p = n) = T · 3 · 5 · 7 · · · · · 2n=-1 

or for any real cxponenb <p: 

~() l;·i'(rp-~l) 
u~ <p = --

r( ~ i) 

(21) 

(22) 

(23) 

(24) 

The factor u in Eq. (24) is exactly true for narr~w-band processes. An approach was 
propm;;ed [9] for the case of a broad-band process. This formula involves an additonal 
dependence on t he irregularity factor i: 

u 1J ( q , i) = u ( <p) . V l__t-=l-2 ~ 1 

where i = n0 / n 1 and 
n0 : total num bcr of crossings of load mcan in one direction 
n1 : total num ber of maxima 
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Considering an ideal narrow-band process the irrcgularity factor i becomes 1 and 
therefore un (<p, i) goes over to u (<p). 

5. Distribution independent fatique life of narrow-hand processes 

Substituting Eqs. (18) and (21) in Eq. (15) provides: 

NL = -----------

u (rp). -i J aLJ]) Ul df 

(26) 

Eq. (26) allows us to calculate any narrow-band processes of finite total power. In 
accordance with the mmal description ofthe Palmgren/Miner formula Eq. (26) may 
also outlined as a k-step formula realizing the fact that the root mean square of step 
gradients, see Eq. (14), also comüsts of a sum formula: 

J'llL = 

/ 

l 
'In 

J; nl\ 
J{ = 1 

(27) 

Eq. (27) can be explained physically as an ·Accumulation of Abstract Damage 
Pffwer' [10] similar to Palmgren/Miner's rule as an accumulation of an abstract 
damage energy. 

6. Distribution independent fatique life of broad-band processes 

In this case the performance spectrum of different frequencies influences simul­
taneously. Therefore it is better to replace 'Xumber of Cycles N' by 'Time T'. For 
an ideal narrow-band process it is true that the total power in the shape of the 
one-side power spectrum Gis only concentrated on a single frequency f 0 : 

S_rnges;:::::; G.rn (f0 ) = L1 Deff2 (28) 

Substituting Eq. (28) in Eq. (26) yieH~: 

NL = ---- -1 
- -­

u (rp) . 1 0 ~j]) (j~) 
(29) 

NL may bc split into ·Fatigul~ Lift> Time TL and frequency fo: 

NL=TL·f0 

Then Eq. (29) leads to: 

l 
TL=------

u (<p) · 1 O,rn \fo) · fo2 

(30) 

(31) 

The product under the· root reprfäents the po\\-er ;-;pectrum of a speed function 
L1 Dv (t) = d [L1 D (t)J/ d t. Thus 

2n 2:-c Ti = ----.:=-c=-=-=--------=-- = ---
u (cp) ·JG Ll nv Uo) u(rp)·8_1])vgl', 

respectively, '\Yhere 8-1 Dvges is the total po\Yer of speed L1 Dv (t). This power may be 
separated in its power spectral density parts G LI Dv (f) according to Eq. (18). In 
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comsidcration of G~ n
0 

(f) = 4- ;r2 ·f2·(/d1J (f) and changing u (fp) to un (<p, i) Eq. (32) 
yiclds thc fatiguc life time of broad-band procei".lscs: 

(33) 

un (rp,i) · -, . ( Öi tJ (f) ·Pdf 
LI 

Eq. F3:3) contains Eq. (:W) as spccial ca;.;e. 

7. Application of discrete Fourier transformation to the damage gradient function 

An actual calculation of fatiguP life time 1\ for any load time courses of finite total 
po\n'r is only possible on tlw hasis of samplitication. Thcn a discrete frequency 
spectrum is o btained by means of discrete Fourier transformation. ln thi:-; ease the 
infinite integral in Eq. (:3:3) goe;.; over to a finite sum forrnula until a finite number 
p of spectral values and discrete frcquencie:-; f1: 

- -
~--- ----- -- --------­

-~-------

- I Ji 

UJJ (<p, i) . J! ~; G.1 ])/ (.[,) . ft~ 
l = 1 

wherc a_J })/: dis<.:rete power speetrum 

Before heing trnnsformed into the frequenc~· domaitL the load time eoursc has to 
be changed in a discrete damage gradient function. e.g. according to Eq. (rn). 
The use of Fast Fourier Transformation (FFT) 111 \ makt•s possibll' an cffeetive 
calculation of fatigue life. Ho\\'ever, tlw user of Eq. ( :3-t-) has to consider the usual 
peculiarities of digital signal analysis like Shannon';.; ;.;rnnning tlworem and unavoi­
dabh· leakages duC' to finite time lenghb. 
Thc FORTRAN progrnm SLEBE IH 1 \ms imph'mPnkd for the calculation of the 
fatigue life time TL accor<ling to Eq. (:34). Tlw prerequi;.;ite for using this program 
is the prtwious recording of the sampled loacl tinw (·ourse on a magnetic disc tile. 
SLEBE changes this discrde function to a corresponding damage gradient function, 
considering top stress o max• the 8-N-cnrv(·, and tlw endurance limit Gn. After that 
operation the ne\\. values _;j D (t) are n·corded 011 a second disc tile for further pro­
ccssing. 
As already rnentioned, only values ahove tlw mean nduc are used. Hen<.:e, trawüent 
timt> parts occur. \\·hich \nrnkl creak additional mi;.;takes during the convoluting 
opt>ration in FonriPr trnnsfornrntion, spe> Fig. 2. Tlwn·fore. tlw program puts together 
tlw transif'tÜ parts. This treatment leafb to a freqm•nc,v \\'hieb is too high. ln Eq. (:34) 
\\T must then·forp consider ~L ·Transient Factor t F -= TF/T': 

U]i (cp, i). fp. ,, !_, O,Jl)t* (f1). f,~ 
l = 1 

\dicre O*: po\\Tl' spectrurn of transient parts 

The program transforms successivc tinw blocks \\-ith a maximal block length /1 = 2048 
samples and tinally calculatcs the arithmetic mean of powN spectra of all proces:-;pd 
block;.; for every frequency j[. 
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t 
0 

JL----J 
t-- Fig. 2 Processing of values 

above mean stress am as a 
trnnsient function 

Furthermore, the function L1 D (t) may be multiplied by weighting functions in time 
domain. Window functions according to Bartlett, Hanning, and Hamming [12] 
are used. 

8. Examples of application 

If Eq. (34), or (35), is really independent of amplitude distribution, then it has to be 
possible to predict the fatigue life of an usual sine function, see Fig. 3, simply by 
means of its samples. 

A sine function is given: 

a ( t) = a J{ • sin 2 n f 0 t 

and an s-N-curve ·with: 

N (a) = 1.27·1017 · a- 5.42 

Fig. 3 Sine function a (t), samples ai (ti), amplitude 
ak, scan interval LI t 

(36) 

(37) 

At <JR = 180 MPa the actual fatigue life il'l NE (<JK) = 75897 cycles, and due to a 
frequency f 0 = 20 Hz the fatigue life time would be TE = 3794.85 sec. 
For calculation by SLEBE the function a (t) 'ms digitally produced as a value 
sequence a1 (ti) 'vith 50 samples per complete cycle and recorded on disc. The pro­
gram using different window functions provided the following results: 

Bartlett: TL = 3897 .7 sec (0.97) 
Hanning: Ti= 3697.7 sec (1.03) 
Hamming: rpL = 3855.6 sec (0.98) 

The figures in brackets show the accuracy Q, i. e. the actual fatigue life time TE 
tlivided by the calculated fatigue life time TL· 
This test example took about three minutes including dialogue for the whole pro­
cessing of 10,000 samples ai by a computer with 1 MHz CPU frequency. 
For verification with experimental values, random functions a (t) were analyzed by 
SLEBE [9], which Lange [13] had detected in their effect on notched steel specimens 
St38. He had used Gaussian processes of various irregularity factors i = 0.95, i = 0.7, 
and 'i = 0.3 and with a uniform Crest factor C = CTmaxl<Jeff = 3.7. In Fig. 4 the load 
time course of i = 0. 7 il'l plotted. 
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Fig. 4 Exam ple for a used 
Gaussian process with i = 0.7 

.Fig. 5 Exp. fatigue Jifo cur­
ves: (1) i = 0.95 (2) i = 0.7 
(3) i = 0.3, calculated by 
SLEBE: (4) i = 0.95 
(5) i = 0.7 (6) i = 0.3, a,naly­
tically detected for i = 1.0: 
(i) according to Miles, 
(8) after Eq. (38) 

For each of these functions, 100,000 samples were proce~sed by SLEBE. Fig. 5 shmn; 
the experimental results by Lange in comparison to the calculated values. Thet:ie 
results are drawn as fatigue life curves. In Fig. 5 two analytically calculated fatigue 
life curves (7) and (8) are shown for the theoretical irregularity factor i = 1. Curve 
(7) is based on Eq. (3) and curve (8) was derived on the basi1' of the distribution 
independent fatigue life prediction specially applied to a narrow-band Gaussian 
process. Similar to Miles, the sums in Eq. (27) were replaced by infinite integrals 
of the Rayleigh density and the Gamma function was again used for effective deR­
cription of these integrals. Hence, NL gocs over to a fatigue life N w particular to 
the case of a narrow-band Gaussian process: 

Kw Nw=------
'P 

Vr(<r+ 1) -22 
·Getr'P 

9. Survey of the proposed fatique life theory 

(38) 

To getan impression of the utilization of the proposed theory, the above mentioned 
accuracy Q =TE/TL was applied. In total, 34 test series of random and non-random 
load time functions were analyzed by the SLEBE program [9]. The accuracy in 
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comparison to the experimental fatigue supplied logarithmic normall,Y distributed 
results with the following values: mcan = 1.26, medien = 1.15. 10. p. c. of accuracy 
was smaller than Q = 0.:39 and 90.p.c. was smaller than 2.4:~. Such scatter is usual 
for fatigue problems. 
The following steps havc to hc pcrfornwd in the spcctroanalytical calculation: 

l. Samplification of the load time function <> (t) to <1i (t;) 
2. Division of Oi (ti) by its constant nwan stress tim. 

Detecting the irregulctrity factor i and the absolute rnaximum Gmax of thc Oi (t;) 
function ("with zero mean) 

3. Changing function <Ji (ti) to a damage gradicnt function J Di (t 1'), e.g.: 

1 
j lJ; (f;) = }-,.-- · Oi 'I (:JÜ) 

\w 

where K1c and rp: s-N-curve constants considcring the constant mcan stress Om· 

4. Calculation of discretc power spcctrum 0 J n1 by rneans of Fast Fourier Trans-
formation. 

5. Application ofEq. (:-~4) or (:{5). 

Fora manual calculation Eq. (27) is suitable. Howcver. it is only valid for cxact or 
approximatc narro\\·-band proccsscs. 

10. Conclusions 

ln this papPr is shmn1 that additional information cm clistrilmtion funetions is ahYays 
necesf.lary when the linear cumulative damage hypothc:-;is by PalmgrenJiincr is 
used, becau:-;e thi8 formula represent:-; an arithmetic mean. Such a mean is not sufti­
cient as a t:-1ole bai'.\is for spectro-analysis. Therefore a square mean i:-; proposed. Thi:-; 
change of the cumulative damage hypothe:-;is enablcs us to use :-;amples "·itlwut 
reference to amplitude distributions. 
The calculation of the fatigue life time 'I1 on the ba:-;is of samples was lwn· dcri n·d 
and demonstrated for spectro-analysis. Howcver. there i:-; still a furthcr facility to 
obtain this lifc time. The right term of Eq. (:~2) contain:-; the total power of the speed 
time function J Dr (t), i. e. the root mean :-;quare !1 D J·"pff of speed values J lh (t). 
L1 Dveff may he cletected a:-; :mm of all squan•d :-;peed samples according to Eq. (17). 
The speed gradienfa; L1 Dv are calculable hy means of the values L1 D, for example on 
ba:-üs of Spline functions. On this way the fatigue lifo time TL can be calculated 
\rithout Eourier transformation. 
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