Amplitude Distribution Independent Prediction of Fatique Life
Dieter Joensson

It is shown that the fatigue life of vibrating machine parts may be predicted by spectro-analysts
without information on amplitude distributions. For this purpose a square mean, tnstead of an
arithmetic mean in the shape of the Palmgren/ Miner’s rule, is proposed as the cumulative damage
hypothesis.

The spectro-analystis is performed on a newly introduced damage gradient function corresponding
to the load time function. This damage gradient function may be analyzed by discrete (fast) Fourier
transformation.

The article contains some examples of application including random processes.

Es wird gezeigt, daf die Lebensdauer von schwingenden Maschinenbauteilen durch Spektralana-
lyse ohne Informationen iber Amplitudenverteilungen berechnet werden kann. Zu diesem Zweck
wird ein quadratischer Mittelwert als kumulative Schidigungshypothese vorgeschlagen anstelle
eines arithmetischen Mittelwertes in Form der Palmgren| Miner- Regel. Die Spektralanalyse mittels
schneller Fouriertransformation erfolgt an einer new eingefithrten Schidigungsgradientenfunktion,
die der Beanspruchungs-Zeit- Funktion zugeordnet ist.
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bution

1. Introduction

Three main input values are necessary for fatigue life prediction of vibrating machine
parts: firstly information on fatigue behaviour of material, secondly a cumulative
fatigue damage hypothesis, and thirdly an effective description of the load time
function. The typical load has to be outlined and so recorded that the essential
damage influences are contained. The cumulative frequency distribution of ampli-
tudes is proved to be most responsible for fatigue life. Therefore, at present it is
customary to calculate the fatigue strength on the basis of amplitude distribution.
These distributions may be detected by means of different counting methods, which
generally provide different results, because only selected points are processed, e.g.
maxima and minima. However, when the digital counting result is obtained, then
the fatigue life can be directly calculated by a cumulative sum formula- without .
any spectrum. Thus, so far the spectro-analysis on fatigue strength has only been
used for additional process information. Such analysis is based on samples and hence
requires processing of all values instead of selected points. Besides, there are already
some formulas for fatigue life prediction on the basis of samples, but until now they
have always needed knowledge about the special amplitude distribution. Independent
of these problems, in recent years the spectro-analysis instrumentation has been
developing rapidly. ‘

In the following derivation is shown, which contributions have to be realized for a
sole application of spectro-analysis on fatigue strength — without consideration of
amplitude distributions.
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2. Fatique life due to a stationary Gaussian load process

So far the Gaussian process has been investigated and applied most of all. Miles [1]
was the first to propose a cloxed solution for spectro-analytical calculation of fatigue
life:
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I': Gamma function. @: exponent of Woehler’s curve (s-N-curve, i.c. stress
amplitude against Number of cycles to failure)
Oeft: root mean square of all samples of the stress time function ¢ (). Only ger is
calculable by spectro-analysis
o reduced stress. by which according to Miles. the fatigue life Ny oceurs:
Nyi=Kuw- 0,77 (2)

where K,: constant of s-N-curve
Eq. (2) means a straight s-N-curve in a double logarithmic diagram. From Egs. (1)
and (2) the fatigue life by Milex is as follows:
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The foundation of thix equation is the axsumption of linear damage, i.e. the formula
by Palmgren [2] and Miner [3] without endurance limit (Corten/Dolan [4]
lincarified):
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where
Nar: fatigue life by Palmgren/Miner
m: number of amplitude block steps of a sine function with various amplitude
values g
k: block step
ng: number of load eveles per block step
Ni: number of load cyeles that will produce fatigue failure due to ox

Miles replaced the sums in Eq. (4) by integrals of frequency density p, (5) of maxima
G . for example:

w - -
Y o= [ p(&)dd=n | fi(6)ds (5)
K=1 il 0

because of p, () = u; f, (6) .

where n,: total number of maxima

fi(6): one-dimensional density function of maxima

The maxima of a stationary ergodic Gaussian process have a Rice distribution [5, 6].
By contrast, the xamplex have a Gaussian distribution.

-
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Particulary in a narrow-band Gaussian process the Rice probability density of
maxima goes over to a Rayleigh density:

h6) = Zvexp [~ 50 (®)

Teff 20®

Thus, the formula by Miles (4) can be described in consideration of Eqgs. (5) and (6)
as a ratio of integrals of the Rayleigh density (6). Miles essentially simplified this
ratio by substituting the integrals through the complete Gamma function:

oo

I'(z + 1):2‘zfx23—1‘exp{*%x2}dx (7)
0

Eq. (4) only becomes Eq. (3) by means of Eq. (7). Consequently, Eq. (3) is only valid
for a stationary ergodic narrow-band Gaussian load process, since Eq. (3) is based on
the Rayleigh distribution of maxima. Spectro-analytical formulas proposed later
may often be reduced to Milesformula.

3. Distribution independent calculation of fatique life

Of course, it is conceivable to apply other kinds of distribution instead of distribu-
tion (6). All spectro-analytical formulas, which are based on the Palmgren/Miner
rule (4) may be reduced to the following fundamental type:

1
L1760 o
where L: functional expression dependent on the one-dimensional probability

density f, of maxima §.

Ny = (8)

The root mean square gefr can be obtained by the total power S;ues of the process
a(f):

Geff? = Ngges = k/i S (m)d o 9)

- 20

where S: power spectral density and o: angular frequency. Eq. (8) is based on the
assumption of linear cumulative damage. Only this kind of damage supplies a result
independent of the sequence of load steps. Moreover. linear damage according to
Eq. (4) represents an arithmetic mean of all additional damage d Dg of the steps
k=1,2,....m:

1
dDK = N 5

N (10)

The reciprocal cycles 1/N g are here designated as ..Step Damage Gradient A Dg™.
Considering A Dg, the Palmgren/Miner rule (4) without endurance limit is an

arithmetic mean of step damage gradients .1 Dyg:
1

- 11
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where

m
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When Eq. (11) is compared to Eq. (8). then it is clear that the arithmetic mean of
amplitudes cannot be sufficiently described by the root mean square of samples,
because there is not any relationship between both values.

Incidentally, that is the reason why beside the root mean square gerr it is always
necessary to use additionally a functional expression L for charakterization of the
amplitude distribution — if the Palmgren/Miner rule is utilized. One has to choose
another mean to avoid the knowledge about amplitude distribution. For this purpose
the root mean square of amplitudes is suitable. For example, a zero mean sine func-
tion z (f) of a constant frequency without change of mean stress and with various
dmplitudes x, see Fig. 1. provides:

ot =2 o (13)
where
Teff root mean square of samples x (t)
xR?: root mean square of amplitudes ay:
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ig. 1 Sine function with various amplitudes a;.

Hence there exists between both root mean square values a simple relation. which
is independent of distribution of amplitudes. Therefore it was proposed [7. 8] to

use, instead of Eq. (11). the root mean square | Dg?:

Np— 1 (15)

AD
However, in this case the mean square has to be constructed by a root mean square
of sampled damage gradients 2 D (t). These gradients follow from the sampled stress
time function ¢ (¢), i.e. everey sample ¢ of time ¢ provides one sample 4 D.
In this manner a ,,Damage Gradient Function D (t)” is produced. The function
A D (t) is detected by the s-N-curve, e.g.
1
AD(t) = <— -o% (1) (16)
Ky
here for N (o) as straight line in a log ¢-log N-diagram. The damage capacity is only
assumed for samples o (£) above the mean value, because in a zero mean load time
function, an equally large negative sample belongs to every positive sample. This
point of view corresponds to the structure of an s-N-curve.
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The root mean square A Deg of the damage gradient function A D (f) may be detected
either as square mean of all samples A D (f):

e

AD® = lim — [ AD* () dt (17)
Tovoo L'

where T': time area

or by mecans of the total power S pges:

oo

ADe2 = Sipges= [ Gap(f)df (18)
0

where GL1p = 2 8, p: one-side power spectral density and
f: frequency

Gip f) arises from the complex amplitude denxity A, o(jf):

Gip(fy=2-Aip(f)-d*(jfHdf (19)

where ( )* conjugate complex part. j = l/:i
Finally, the Fourier transformation of the real function - D (t) supplies the ampli-
tude density:

e

A (f)y= | AD(t)-exp[—j - 2nft]dt (20)

— oo

4. The factor u

Because A D (t) is a sine function ¢ () powered by @, the |2 ratio (13) is no longer
valid. The new factor u has to be calculated by:

Z]-D_; = Uu- JDej‘f (21)
and
e\ 1 L
SoE ) =—==1 = [ sin2% o g 29
(A Detf‘) u? }linw T ‘_;/ sin?? mtdt ( 2)

where ¢: exponent of s-N-curve, » = 2 z f: angular frequency
Dependent on a integer-valued exponent ¢, Eq. (22) yields:

Y 2 4 6 8 2n e
or for any real exponents ¢:
. a0+ 1 :
() =1 LD 2

N
1(?';—1)

The factor « in Eq. (24) is exactly true for narrow-band processes. An approach was
proposed [9] for the case of a broad-band process. This formula involves an additonal
dependence on the irregularity factor ¢:

wnly, i) = (@) |-yt 21 (25)
where ¢ = ng/n, and

ny: total number of crossings of load mean in one direction
ny: total number of maxima
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Considering an ideal narrow-band process the irregularity factor i becomes 1 and
therefore uy (@, ¢) goes over to u (p).

5. Distribution independent fatique life of narrow-band processes
Substituting Eqs. (18) and (21) in Eq. (15) provides:

N_L = : ,;,,1v ST (26)

Gap(f)df

u (@) r[
0

Eq. (26) allows us to calculate any narrow-band processes of finite total power. In
accordance with the usual description of the Palmgren/Miner formula Eq. (26) may
also outlined as a k-step formula realizing the fact that the root mean square of step
gradients, see Eq. (14), also consists of a sum formula:

Ny=|. E=1 (27)

Eq. (27) can be explained physically as an ‘Accumulation of Abstract Damage
Power’ [10] similar to Palmgren/Miner’s rule as an accumulation of an abstract
damage energy.

6. Distribution independent fatique life of broad-band processes

In this case the performance spectrum of different frequencies influences simul-
tancously. Therefore it is better to replace "Number of Cycles N’ by ‘Time 7". For
an ideal narrow-band process it is true that the total power in the shape of the
one-side power spectrum ¢ is only concentrated on a single frequency f,:

SaDges = Gap (fy) = ADest? (28)
Substituting Eq. (28) in Eq. (26) vields:
Np= ! (29)

w(g)- 161 (fy)

N may be split into "Fatigue Life Time 7’7 and frequency f,:

Ny=Ty. f, (30)
Then Eq. (29) leads to:

1
w(g)- | Gan (fo) - fo*
The product under the root represents the power spectrum of a speed function
ADy (t)=d[4D (t)]/ d . Thus

2n . 2

w(g) VGany () % @) Sibpge

T.=

(31)

T,=

(32)

respectively, where S, Dyges 13 the total power of speed 4 D, (t). This power may be

separated in its power spectral density parts G'4p, (f) according to Eq. (18). In
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consideration of (7, p, (f)=47-f Cap (f) and changing u (¢) to ug (¢, 1) Eq. (32)
yields the fatigue life time of broad-band processes:

e (33)
wp @0y | [ Gan(f) - f2df

o

Eq. (33) contains Eq. (26) as special case.

7. Application of discrete Fourier transformation to the damage gradient function

An actual caleulation of fatigue life time 7', for any load time courses of finite total
power is only possible on the basix of samplification. Then a discrete frequency
spectrum is obtained by means of dixcrete Fourier transtormation. In this case the
infinite integral in Eq. (33) goes over to a finite sum formula until a finite number
p of spectral values and discrete frequencies i

r,=-—— S (34)

N VA e
wp (@, 1)« |/ 1L1 G (fi)- [

where (4 p,: discrete power spectrum

Before being transformed into the frequency domain. the load time course has to
be changed in a discrete damage gradient function. ¢.g. according to Eq. (16).
The use of Fast Fourier Transformation (FFT) [11] makes possible an effective
caleulation of fatigue life. However, the user of Eq. (34) hax to consider the usual
peculiarities of digital signal analy=ix like Shannon’s scanning theorem and unavoi-
dable leakages due to finite time lenghtx.

The FORTRAN program SLEBE [9] was implemented for the calculation of the
fatigue life time 7', according to Eq. (34). The prerequisite for using this program
ix the previous recording of the sampled load time course on a magnetic dise file.
SLEBE changes thix discrete function to a corresponding damage gradient function.
considering top stress 6 max. the s-N-curve, and the endurance limit op. After that
operation the new values A D (t) are recorded on a second disc file for further pro-
cessing.

Ax alrcady mentioned, only values above the mean value are used. Hence, transient
time parts occur. which would create additional mistakes during the convoluting
operation in Fourier transformation, see Fig. 2. Therefore. the program puts together
the transient parts. This treatment leads to a frequeney which is too high. In Eq. (34)
we must therefore consider a Transient Factor tp = Tp/T7:

where (*: power spectrum of transient partx

The program transforms successive time blocks with a maximal block length n = 2048
samples and finally calculates the arithmetic mean of power spectra of all processed
blocks for every frequency fi.
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AN
On \\ 7 4 f— T t =  Fig. 2 Processing of values
N/ . \v/f F above mean stress g, as a
T o~ i transient function

Furthermore, the function A D (¢) may be multiplied by weighting functions in time
domain. Window functions according to Bartlett, Hanning, and Hamming [12]
are used.

8. Examples of application

If Eq. (34), or (35), is really independent of amplitude distribution, then it has to be
possible to predict the fatigue life of an usual sine function, see Fig. 3, simply by
means of its samples.

6

O

6, (#)

LN

4 [ ——t

Fig. 3 Sine function ¢ (t), samples g; (¢;), amplitude
‘H‘ At - const. O, scan interval 4 ¢ -

A sine function is given:

6(t) =0k -sin 27 fyt (36)
and an s-N-curve with:
N (g) = 1.27-10'7 . g— 242 (37)

At 6x = 180 MPa the actual fatigue life is Ng (0x) = 75897 cycles, and due to a
frequency f, = 20 Hz the fatigue life time would be Ty = 3794.85 sec.
For calculation by SLEBE the function o (t) was digitally produced as a value
sequence g, (f;) with 50 samples per complete cycle and recorded on disc. The pro-
gram using different window functions provided the following results:

Bartlett: 7', = 3897.7 sec (0.97)
Hanning: 7', = 3697.7 sec (1.03)
Hamming: 7', = 3855.6 sec (0.98)

The figures in brackets show the accuracy @, i.e. the actual fatigue life time 7'y
divided by the calculated fatigue life time 7'y.

This test example took about three minutes including dialogue for the whole pro-
cessing of 10,000 samples ¢; by a computer with 1 MHz CPU frequency.

For verification with experimental values, random functions o (t) were analyzed by
SLEBE (9], which Lange [13] had detected in their effect on notched steel specimens
St38. He had used Gaussian processes of various irregularity factors ¢ = 0.95, ¢ = 0.7,
and ¢ = 0.3 and with a uniform Crest factor €' = & yax/Gerr = 3.7. In Fig. 4 the load
time course of { = 0.7 is plotted.
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Fig. 4 Example for a used

L S Gaussian process with ¢ = 0.7
max.
Stress
Level
220 —-
% 2
B
180
Fig. 5 Exp. fatigue life cur-
ves: (1) i =0.95 (2) ¢ = 0.7
150 (3) + = 0.3, calculated by
SLEBE: (4) ¢ = 0.95
| (5) ¢ = 0.7 (6) ¢ = 0.3, analy-
é 100 é 5 107 tically detected for 7 = 1.0:
) (7) according to Miles,
N (Cycles to Failure) —=— (8) after Eq. (38)

For each of these functions, 100,000 samples were processed by SLEBE. Fig. 5 shows
the experimental results by Lange in comparison to the calculated values. These
results are drawn as fatigue life curves. In Fig. 5 two analytically calculated fatigue
life curves (7) and (8) are shown for the theoretical irregularity factor i = 1. Curve
(7) is based on Eq. (3) and curve (8) was derived on the basis of the distribution
independent fatigue life prediction specially applied to a narrow-band Gaussian
process. Similar to Miles, the sums in Eq. (27) were replaced by infinite integrals
of the Rayleigh density and the Gamma function was again used for effective des-
cription of these integrals. Hence, Ny, goes over to a fatigue life N, particular to
the case of a narrow-band Gaussian process:

Ky .
Nig = (38)

2
V(g +1)-2% . 0err®

9. Survey of the proposed fatique life theory

To get an impression of the utilization of the proposed theory, the above mentioned
accuracy @ = Tg/T 1 was applied. In total, 34 test series of random and non-random
load time functions were analyzed by the SLEBE program [9]. The accuracy in
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comparison to the experimental fatigue supplied logarithmic normally distributed
results with the following values: mean = 1.26, medien = 1.15. 10. p.c. of accuracy
was smaller than @ = 0.39 and 90.p.c. was smaller than 2.43. Such scatter is usual
for fatigue problems. ‘
The following steps have to be performed in the spectroanalytical calculation:
1. Samplification of the load time function ¢ () to o; (1))
2. Division of ¢; (t;) by its constant mean stress d,.
Detecting the irregularity factor i and the absolute maximum G max Of the o; (1)
function (with zero mean)
3. Changing function ¢; (f;) to a damage gradient function 1 D; (£;), e.g.:
ADi () = oo (39)
Ky
where K, and @: s-N-curve constants considering the constant mean stress gu,.
4, Calculation of discrete power spectrum G4 p, by means of Fast Fourier Trans-
formation.
5. Application of Eq. (34) or (35).
For a manual ealculation Eq. (27) is suitable. However, it is only valid for exact or
approximate narrow-band processes.

10. Conclusions

In this paper is shown that additional information on distribution functions is always
necessary when the lincar cumulative damage hypothesis by Palmgren Miner is
used, because this formula represents an arithmetic mean. Such a mean is not suffi-
cient as a sole basis for spectro-analysis. Therefore a square mean is proposed. This
change of the cumulative damage hypothesis enables us to use samples without
reference to amplitude distributions.

The calculation of the fatigue life time 7' on the basis of samples was here derived
and demonstrated for spectro-analysis. However. there is still a further facility to
obtain this lifc time. The right term of Eq. (32) contains the total power of the speed
time function .1 Dy (1), i.e. the root mean square /A Dyere of speed values A Dy (t).
A Dyege may be detected as sum of all squared speed samples according to Eq. (17).
The speed gradients A Dy are calculable by means of the values A D, for example on
basis of Spline functions. On this way the fatigue life time 7', can be calculated
without Fourier transformation.
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